skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gramm, Dominique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biomaterial-assisted stem cell therapies hold immense promise for regenerative medicine, yet clinical translation remains challenging. This review focuses on recent advances and persistent limitations in applying induced pluripotent stem cells (iPSCs), endothelial colony-forming cells (ECFCs), multipotent mesenchymal stromal cells (MSCs), and embryonic stem cells (ESCs) within engineered microenvironments. We introduce a novel “bottom-up” approach to biomaterial design. This approach focuses first on understanding the fundamental biological properties and microenvironmental needs of stem cells, then engineering cell-instructive biomaterials to support them. Unlike conventional methods that adapt cells to pre-existing materials, this strategy prioritizes designing biomaterials from the molecular level upward to address key challenges, including differentiation variability, incomplete matching of iPSCs to somatic counterparts, functional maturity of derived cells, and survival of ECFCs/MSCs in therapeutic niches. By replicating lineage-specific mechanical, chemical, and spatial cues, these tailored biomaterials enhance differentiation fidelity, reprogramming efficiency, and functional integration. This paradigm shift from passive scaffolds to dynamic, cell-instructive platforms bridges critical gaps between laboratory success and clinical translation, offering a transformative roadmap for regenerative medicine and tissue engineering. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026